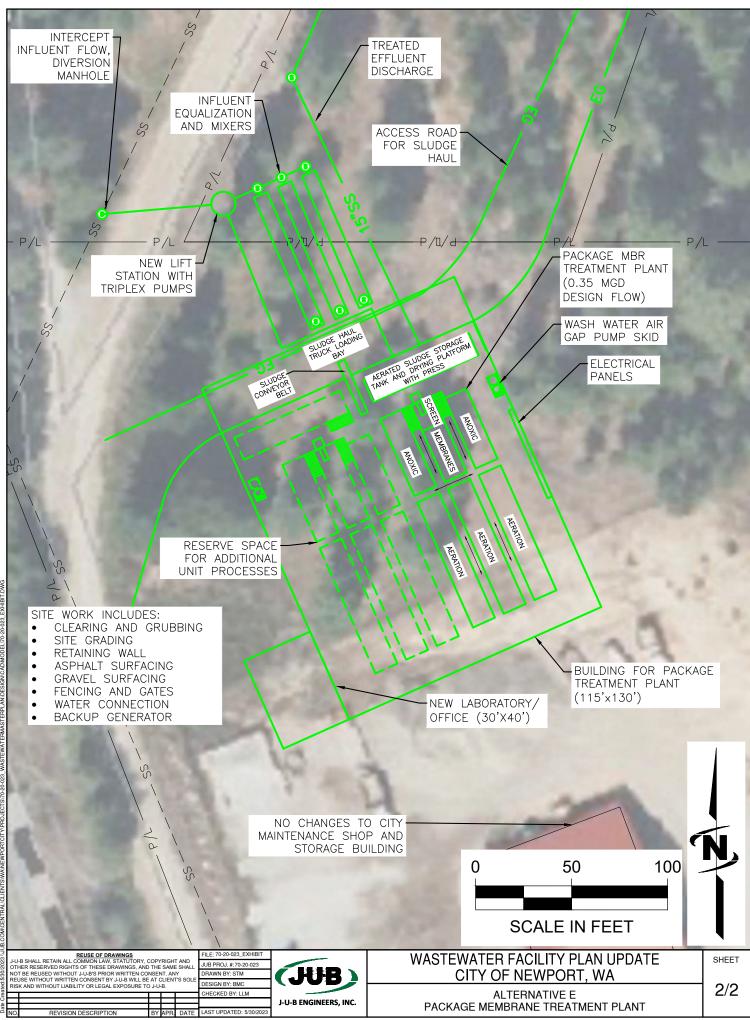
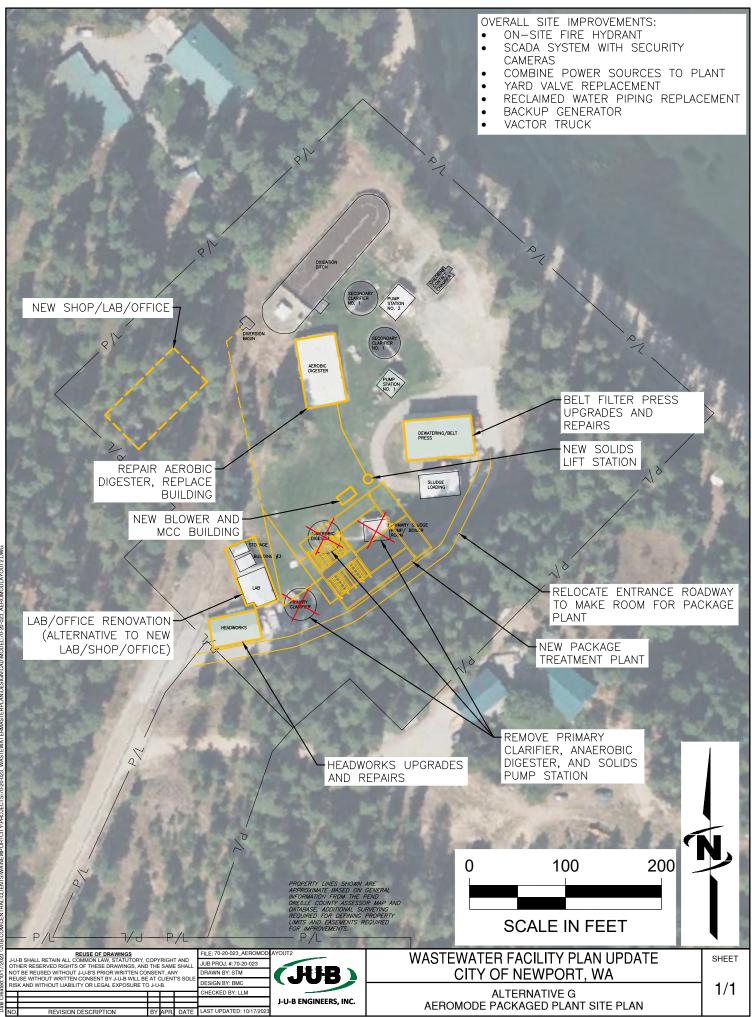

Appendix G – WWTP Improvement Alternatives Exhibits





Date:5/30/2023 9:38 AM Plotted By: Sam Mineer

Appendix H –MBR Plant Design Calculations and Life Cycle Costs

CALCULATIONS BELOW FOR ENGINEERING USE ONLY SUPPLYMENTAL CARBON CALCULATIONS {M&E Ed. 5, pgs. 848-859}				
Chosen Supplemental Carbon Chemical	C _{CHEM}	=	Methanol 100%	
COD Concentration	[COD]	=	1,164,000 mgCOD/L	
Chosen Dose Rate	DOSE	=	0 gCOD/d	
Carbon Substrate Degrading Factor	η	=	0.80	
Carbon Substrate Biomass Yield	Y _H	=	0.41	
Max Substrate Utilization Rate	U _{max}	=	1.30	
Arrhenius Coefficient	θ	=	1.10	
Half-Saturation Coefficient	Ks	=	1.00	
Nitrate Half-Velocity Coefficient	K _{NO3}	=	0.10	
Effluent Nitrate Goal	N _{e goal}	=	3.00 mgNOx/L	
Biodegredation Kinetic Variable (Yield)	Y	=	[1-(1.42 x Y _H)]/(2.86)	
Biodegredation Kinetic Variable (Utilization)	U	=	0.15 (U _{max}) / (Y _H)	
Biodegredation Kinetic Variable (Nitrate Residual)	N	= =	3.17 (S _{NO3}) / [K _{NO3} + S _{NO3}]	
		=	0.97	
Biodegredation Kinetic Variable (MLVSS)	Х	=	Xm / Xvss 0.00	
	0010			
Specific Denitrification Rate of External Carbon Source	SDNR _{CARB}	=		
*Assumed High Substrate Concentration			0.0 g NO3 / g MLVSS-d	
Consumptive Batia	C	_	1/2	
Consumptive Ratio	C _{R.NO3}	=		
		=	6.85 gCOD / gNO3	
Effluent Carbon Substrate	Ss	_	{ (0,000 gCOD/d) - [(0.000 gNO3/gMLVSS-d) x (6,210 gMLVSS/m^3) x (0,000 gMLVSS/m^3) x (6.85 gCOD/gNO3)] } / (750,000 m	n^3/d \ / (1 0 + 4 0)
	JS	=		n° 57 d) / (1.0 + 4.0)
			0.000 gCOD/d	
Design Effluent TSS	TSS	=	5.00 mg/L	
VSS:TSS Ratio	VSS/TSS		0.80 gVSS / gTSS	
Design Effluent Carbonaceous BOD	cBOD _e	=	2.00 mg/L	
	BOD		(2.00 gcBOD/m^3) + [(0.60 gcBOD/gUBOD) x (1.42 gUBOD/gVSS) x (0.80 gVSS/gTSS) x (5.00 gTSS/m^3)] + [(0.00 gCOD/m^3) x (1.42 gUBOD/gVSS) x (0.80 gVSS/gTSS) x (5.00 gTSS/m^3)] + [(0.00 gCOD/m^3) x (1.42 gUBOD/gVSS) x (0.80 gVSS/gTSS) x (5.00 gTSS/m^3)] + [(0.00 gCOD/m^3) x (1.42 gUBOD/gVSS) x (0.80 gVSS/gTSS) x (5.00 gTSS/m^3)] + [(0.00 gCOD/m^3) x (5.00 gTSS/m^3)] + [(0.00 gTSS/m^3)] + [(0.0	
Estimated Effluent BOD	BOD	=		0.58 gBOD/gCOD)
		=	5.41 mg/L	
SUPPLYMENTAL ALKALINITY CALCULATIONS				
Primary Alkalinity	ALK	=	250 mg/L CaCO3	
Alkalinity Needed to Maintain pH $\approx 6.8 - 7.0$		=	70.00 mg/L CaCO3	
Aikalinity Needed to Maintain pH ≈ 6.8 - 7.0	ALNREC	=	70.00 mg/L CaCOS	
Alkalinity Used for Nitrification		=	7.14 gCaCO3 / gNH4	
Total Alkalinity Used for Nitrification	ALK _{NIT,TOT}	=	(7.14 gCaCO3/gNH4) x (43.0 gNH4-NO3/m^3)	$NH_4^+ + 2O_2 + 2HCO_3^ > NO_3^- + 2CO_2 + 3H_2O$ {M8
Total Alkalinity Osed for Nitrification	ALN _{NIT,TOT}			
		=	307 mg/L CaCO3	
Alkalinity Produced During Denitrification	ALK	=	3.57 gCaCO3 / gNO3	NH4 ⁺ (aq) + 2 O2(g)> NO3 ⁻ (aq) + 2 H ⁺ (aq) + H2O(l)
Total Alkalinity Produced During Denitrification		=	(3.57 gCaCO3/gNO3) x (43.0 - 9.25 gNO3/m^3)	
Total Alkalinity Produced During Denitrification	ALN _{DNIT.TOT}	=	121 mg/L CaCO3	
			121 IIB/L CaCOS	
Supplemental Alkalinity Required	ALKADD	=	(70 mg/L Needed) - (250 mg/L Raw) + (307 mg/L Used) - (121 mg/L Produced)	
Supplemental Antainity Required	(LENAL)	=	7 mg/L CaCO3	
			,,,,,,	
Alkalinity Source Chemical Selected	ALK	=	NaOH	
Density	ALK _{CHEM D}	=	1,267,700 mg/L	
Purity		=	25 %	
Funty	CLINCHEM P		25 ₇₀	
Chaminal Deriving d		=		
Chemical Required	ALK _{RFO}	=	[(7 mg/L) x (750,000 gpd)]/[(1,267,700 mg/L) x (25 %)]/(24 h/d)	
			0.7 gph	
AERATION CALCULATIONS				
Maximum Air Required (Under MMF)				
O2:BOD Consumption Ratio		=	1.25 lb O2/lb BOD	
Oxygen Consumption from BOD Oxydation	R _{02,BOD}	=	(2161.7 lbs-BOD/d) x (1.25 lbs O2/lbs N)	2 C ₁₀ H ₁₉ O ₃ N + 25 O ₂ > 20 CO ₂ + 16 H ₂ O + 2 NH ₃
		=	2,702 lbs/day O2	L
			<u>2,702</u> Ibs/day 02	
O2:N Consumption Ratio		=	4.60 lb O2/lb N	
Oxygen Consumption from Nitrification (O2)	R _{02,NIT}	=	(367.8 lbs-TKN/d) x (4.60 lbs O2/lbs N)	$C_{10}H_{19}O_3N + 10 NO_3^{-}> 10 CO_2 + 3 H_2O + NH_3 + 10 OH^{-}$
	02,000	=	1,692 lbs/day O2	
Oxygen Consumption from Carbon Addition	R _{02.CARB}	=	0 lbs/day O2	
				$2 \text{ NO}_3^- + 2 \text{ H}^+> \text{N}_2(\text{gas}) + \text{H}_2\text{O} + 2.5 \text{ O}_2$
Oxygen Requirement Ratio	AOR/SOR	=	0.40	
Maximum Total Oxygen Consumption	O2 _{TOT MAX}	=	[(2702 lbs/d) + (1692 lbs/d) + (0 lbs/d)] / (0.40 AOR/SOR)	
<u>.</u>			10,985 lbs/day O2	
Molecular Weight of Air	MAIR	=	28.97 lb/lb mol Air	
Universal Gas Constant	R	=	1,544 ft-lb/lb-mol-R	
Air Density	Nair	=	[(14.70 lb/in^2) x (144 in^2/ft^2) x (28.97 ft-lb/lb mol air-°R)] / [(1.544) x (460 + 68 °F)]	
		=	0.075 lbs / ft^3 Air	
	0053			
Maximum Air Flowrate	SCFMMAX	=	(10,985 lbs/d) / (0.075 lbs/ft^3) / (0.2058) / (0.188) / (1,440 min/d)	
			2,621 scfm	

 $D_3^- ---> 10 CO_2 + 3 H_2O + NH_3 + 10 OH^- \{M\&E eq. 7-110\}$

+ 2 HCO₃^{--->} NO₃⁻⁺ 2 CO₂ + 3 H₂O {M&E eq. 7-91}

Oxygen Credit from Denitrification

AVERAGE ANNUAL FLOW QAA (137.5 kg/d) / (378.3 kg/d) (0.36) x (9000 mg/L) 3,270 mg MLVSS/L

Active Biomass Concentration	(SRT/V) x A_{M}	= =	(24.6 d) / (674 m^3) x (137,479.2 g/d) 5,014.40 mg/L
Total Post-Anoxic Volume	V_{PAN}	=	0 m ³ < No Post-Anoxic Volume
Post-Anoxic NOx Removal Rate	R _{NOx}	=	[(0.000 gNO3/gMLVSS-d) x (6,210 gMLVSS/m^3) x (0 m^3)] + [(1.42 gO2/gVSS / 2.86 gO2/gNO3) x (0.06 gVSS/gVS 0 g/d
Estimated Post-Anoxic NOx Removal	N _{pan}	=	(0.000 g/d) / (1893 m^3/d) / (1.0 + 4.0) 0.0 mg/L
Post-Anoxic Biomass Decay Rate	R _{vss}	= =	(0.06 gNH4/gVSS) x (5,014 g/m^3) x (0 m^3) 0 gVSS/d
Ammonia Production	P _{NH4}	=	(0.06 gNH4/gVSS) x (0 gVSS/d) 0.00 gNH4/d
	Δ NH4	=	(0 gNH4/d) / [(1893 m^3/d) x (1.0 + 4.0)] 0.00 mg/L
Post-Anoxic Observed SDNR	SDNR _b	= =	(0,000 g/d) / [(6,210 gMLVSS/m^3) x (0 m^3)] 0.000 gNO3/gVSS-d
Estimated Effluent NO3 *Soluble Nitrate in effluent	Ne1	= =	[NOx / (1.0 + 0.0 + 4.0)] - (0.00 mg/L) 9.25 mg/L
Recycled NOx to Pre-Anoxic	NOx feed	= =	(4.0) x (1893 m^3/d) x (9.25 mg/L) 70,057 g/d
Pre-Anoxic Volume	V _{NOx}	=	339 m^3
F/M in Pre-Anoxic	F/M _{NOx}	=	[(1893 m^3/d) x (346 mg/L BOD)]/[(339 m^3) x (3,270 mg/L)] 0.59
Readily Biodegradable COD	rbCOD / bCOD	=	30.0 %
Standard Denitrification Rate	SDNR ₂₀ OR	= = =	bo + (b1 x [ln(1)]) => F/Mnox > 0.50 (0.24) x (1) => F/Mnox < 0.50 0.160 g NO3 / g MLVSS-d
Specific Denitrification Rate	$SDNR_{T}$	= =	(0.160 gNO3/gMLVSS-d) x 1.026^(15 - 20 °C) 0.141 g NO3 / g MLVSS-d
Adjusted SDNR	SDNR _{adi}	= =	No Internal Recirc 0.141 g NO3 / g MLVSS-d
Overall SDNR	SDNR	= =	SDNR _{adi} x (MLVSS _b / MLVSS) 0.074 g NO3 / g MLVSS-d

 $P_{x.b} / P_{x.tss}$

 $\mathsf{MLVSS}_{\mathsf{NOx}}$

=

=

=

=

0.36

Fraction MLSS_b

Nitrate MLVSS

gVSS-d)x(5,014g/m^3)x(0m^3)]

		MAXIMUM MONTHLY FLOW Q _{MM}
$P_{x,b} / P_{x,TSS}$	= =	(295.0 kg/d) / (658.1 kg/d) 0.45
MLVSS _{NOx}	=	(0.45) x (9000 mg/L) 4,034 mg MLVSS/L
$(SRT/V) \times A_M$	= =	(14.1 d) / (674 m^3) x (294,976.0 g/d) 6,184.94 mg/L
V _{PAN}	=	0 m ³ < No Post-Anoxic Volume
R _{NOx}	=	[(0.000 gNO3/gMLVSS-d)x(6,210 gMLVSS/m^3)x(0 m^3)]+[(1.42 gO2/gVSS/2.86 gO2/gNO3)x(0.06 gVSS/gVSS-d)x(6,185 g/m^3)x(0 0 g/d
N _{pan}	=	(0,000 g/d) / (2839 m^3/d) / (1.0 + 4.0) 0.0 mg/L
R _{vss}	= =	(0.06 gNH4/gVSS) x (6,185 g/m^3) x (0 m^3) 0 gVSS/d
P _{NH4}	=	(0.06 gNH4/gVSS) x (0 gVSS/d) 0.00 gNH4/d
Δ NH4	=	(0 gNH4/d)/[(2839 m^3/d)x(1.0 + 4.0)] 0.00 mg/L
SDNR _b	= =	(0,000 g/d) / [(6,210 gMLVSS/m^3) x (0 m^3)] 0.000 gNO3/gVSS-d
Ne1	= =	[NOx / (1.0 + 0.0 + 4.0)] - (0.00 mg/L) 8.60 mg/L
NOx feed	= =	(4.0) x (2839 m^3/d) x (8.60 mg/L) 97,720 g/d
V _{NOx}	=	339 m^3
F/M _{NOx}	=	[(2839 m^3/d) x (346 mg/L BOD)]/[(339 m^3) x (4,034 mg/L)] 0.72
rbCOD / bCOD	=	30.0 %
SDNR ₂₀ OR	=	bo + (b1 x [ln(1)]) => F/Mnox > 0.50 _(0.24) x (1) => F/Mnox < 0.50
	=	0.188 g NO3 / g MLVSS-d
SDNR _T	=	(0.188 gNO3/gMLVSS-d) x 1.026^(15 - 20 °C) 0.165 g NO3 / g MLVSS-d
SDNR _{adi}	= =	No Internal Recirc 0.165 g NO3 / g MLVSS-d
SDNR	=	SDNR _{adi} x (MLVSS _b / MLVSS) 0.107 g NO3 / g MLVSS-d
NO _{x.rem}	=	(339 m^3) x (0.107 gNO3/gMLSS-d) x (4034 mg MLSS/L) 226.438 g/d

(0 m^3)]

Mimimum Air Required (Under AAF)

O2:NO3 Consumption		=	2.86 gO2/gNO3-N
O2 Demand for BOD	R _{o.BOD}	=	Q x (S - S ₀) - (1.42 x P _{x.bio}) + (4.57 x Q x Nox)
*Assume no nitrifying bacteria		=	32.4 kg/h
O2 Credit from Denitrification	R _{O.Nox}	=	(2.86 gO2/gNO3) x (43.0 - 9.3 mg/L) x (1893 m^3/d) / 1000 / 24
		=	7.6 kg/h
Average Operational Total O2 Demand	Ro	=	(32.4 - 7.6) kg/h
		=	24.8 kg/h
Standard Pressure	Ps	=	1.0 atm
		=	101.325 kPa
		=	14.70 lbs/in^2
		=	<u>10.33</u> m
Pressure Factor	Pb/Ps	=	exp { - (9.81 m/s^2) x (28.97 g/mol) x (122 - 0 m) / (8,314) / [(273.15 + 15) K] }
		=	0.986
Mid-Depth Factor	de	=	0.40
Depth of Diffusers	Df	=	8.083 ft
Standard DO SAT at 20°C	C _{5 20}	=	9.090 mg/L
DO SAT at 20°C	C _{∞ 20}	=	(9.090 mg/L) x [1 + 0.40 x (2.464 m / 10.33 m)]
		=	9.957 mg/L
DO Transfer Rate	α	=	0.65 < May need adjustment
*Relative to clean water			
DO SAT Coefficient	β	=	0.95
*Relative to clean water			
Diffuser Fouling Factor	F	=	0.90
Temperature Correction Factor	θ	=	1.024
DO SAT at Sea Level at T	Cst	=	10.084
DO SAT at Sea Level at 20°C	Cs20	=	9.092
Soluble O2 Transfer Rate	SOTR	=	24.8 kg/hχ9.957 mg/L
			(0.65 x 0.90) [0.95 x (10.084 mg/L / 9.092 mg/L) x 0.986 x 9.957 mg/L - 2.0 mg/L
		=	56.9 kg/h
Diffuser Efficiency Per Linear Foot of WSE	SOTE/WSE	=	2.21 % / ft
	SOTE	=	18.8 %
Average Operational Aeration Flowrate		=	_ (56.9 kg/h) / (18.8 %) / (1.204 kg Air/m^3) / (0.2058) / (60 min/h) x (35.315 ft^3 / m^3)
		=	719 scfm
 *Optional: Insert Total O2 Requirement from GPS-X		=	cfm
Percent Difference from Maximum Air Flowrate	% MAX	=	
 Percent Difference from Minimum Air Flowrate	% MIN	=	

ng/L)]

Х

1.024 x (20 - 15 °C)

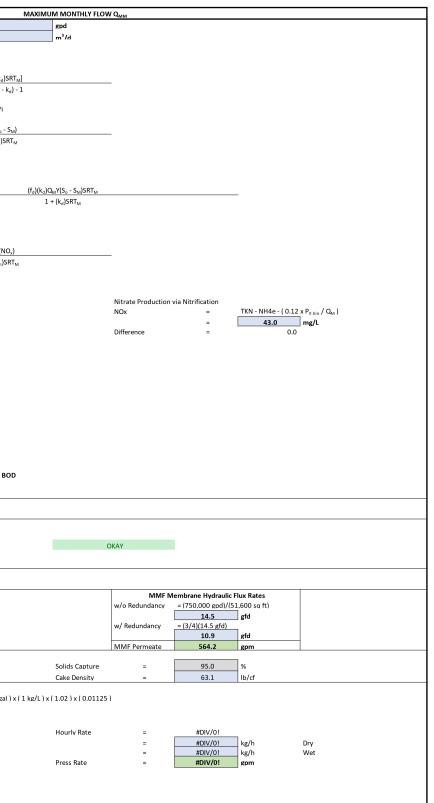
REQUIRED PROCESS VOLUME at MMF			
Desired F:M	F:M _{DES}	=	0.15
Desired Process MLSS *MLSS Max allowable = 9,600 mg/L @ FAS = 5Q.	MLSS _{DFS}	=	9,000 mg/L
Required MLVSS	MLVSS _{REO}	= =	(2161.7 lbs/day BOD) / (0.15 d^-1) 14,412 lbs MLVSS
Required MLSS	MLVSS / MLSS MLSS _{REO}	= = =	0.69 Ibs MLVSS / Ib MLSS (14,412 lbs MLVSS) / (0.69 lbs MLVSS/lbs 20,886
Required Process Volume (gal) *(Aeration + MBR + Anoxic)	V _{reo}	= = =	(20,886 lbs MLSS) / (9,000 mg/L MLSS) / (278,261 gal (278,261 gal) / (7.48 gal/cf) 37,201 cf
REQUIRED AERATION & ANOXIC VOLUME at MMF			
Desired Anoxic/Aeration Volume Ratio	ANX / AER	=	0.40
Req'd Aeration + MBR Volume	V _{AFR} + V _{MEM}	= = =	(V _{REO}) / (ANX/AER) (278,261 gal) / (0.40 + 1.0) 198,758 gal
Req'd Aeration Chamber Volume *Dissociates volume in Membrane Chambers under aeration conditions	$V_{\text{AFR RFO}}$	= = =	(V _{AFR} + V _{MFM}) - (V _{MFM AFR}) (198,758 gal) - (16,730 gal) 185,047 gal
Req'd Anoxic Chamber Volume *Dissociates volume in Pre-Anoxic Chambers under anoxic conditions	V _{anx.reo}	= = =	(V _{REO}) - (V _{AFR} + V _{MEM}) - (V _{PAN.ANX}) (278,261 gal) - (198,758 gal) - (0,000 gal) 79,503 gal
PROCESS CALCULATIONS			
Minimum Allowable SRT - {M&E ed. 5, pgs 755-769}			12 degree
Min. Influent Temperature Max. Influent Temperature Design Process Temperature	T _{min} T _{max} T	= = =	5 °C 30 °C 15 °C
Effluent NH_4 Limit Design Effluent NH_4 Concentration	NH4 _{OUT}	= =	0.0 mg/L 0.50 mg/L
DO in Aeration Basin(s)	DO	=	2.0 mg/L
1/2-Saturation Coeff. for DO	Ko	=	0.50 mg/L
Max Nitrifying Growth Rate @ T = °C	μ_{nm}	= =	(0.90 g VSS/g VSS·d) x (1.072) ^ (T - 20) 0.64 g VSS/g VSS·d
Nitrification 1/2-Velocity Const. (Substrate) @ T = °C	K _n	=	0.50 mg NH4/L
Nitrifying Decay Rate @ T = °C	k _{dn}	=	(0.17 g VSS/g VSS·d) (1.029) ^ (T - 20) 0.15 g VSS/g VSS·d

bs MLSS)

) / (8.34 lbs/gal) x (1,000,000 mg/L)

gal)

rees F, -11.1 degrees C


Nitrifying Specific Growth Rate	μ	$= [(\mu_{nm x} N) / (K_{n} + N)] x [DO / (K_{o} + DO)] - k_{dn}$ = 0.11 p/p/d
Theoretical SRT	SRT'	$=$ 1 / μ_n = 9.35 d
Safety Factor	FS	$= \frac{TKN_{neak} / TKN_{av\sigma}}{1.5}$
Minimum Allowable SRT	SRT _{min}	= FS x SRT' = 14.0 d
Sludge Production		
Wastewater Characteristics {M&E ed. 5, pgs 755-769}		
Primary BOD	BOD	= <u>346</u> mg/L
COD / BOD Primary COD	COD	= <u>1.72</u> = <u>596</u> mg/L
Primary TKN	TKN	= <u>58.8</u> mg/L
Assumed Portion of TKN that is converted to NOx		= 80 %
Estimated Mixed Liquor NOx After Aeration	NO _x	≈ (0.80) x TKN
Itterated Mixed Liquor NOx	AAF	≈ <u>47.0</u> mg/L = 46.3 mg/L MMF
Portion BOD that is soluble Soluble BOD	sBOD	= <u>80</u> % = <u>(0.80) x BOD</u>
		= <u>276</u> mg/L
Portion COD that is soluble		= 80 %
	sCOD	= (0.80) x COD
		= <u>477</u> mg/L
Eq. 1 Biodegradable COD	bCOD	= (1.60) x BOD rbCOD = 553 mg/L
Non-biodegrable COD	nbCOD	= <u>COD - bCOD</u> = <u>43</u> mg/L
Effluent Soluble COD	sCOD _e	= sCOD - (1.6 x sBOD) = 34 mg/L
Primary TSS	TSS	= <u>319</u> mg/L
VSS / TSS Volatile Suspended Solids	VSS	= <u>0.80</u> mgVSS/mgTSS = <u>TSS * (VSS / TSS)</u>
		= 255 mg/L
Biodegradable Particulate COD	bpCOD	=1.6 x (BOD - sBOD)
Particulate COD	pCOD	= 0.93
Eq. 2 Non-biodegradable VSS	nbVSS	$= \left(1 - \frac{bpCOD}{pCOD}\right) \times VSS$
		= <u>18</u> mg/L
Eq. 3 Inert Total Suspended Solids	iTSS	= <u>TSS - VSS</u>
		= <u>64</u> mg/L
Heterotrophic Yield	Y	= 0.45 g VSS / g bCOD
Max Heterotrophic Growth Rate @ T = °C	μ _m	= (6.0 g VSS/g VSS·d) x (1.07) ^ (T - 20) = 4.28 g VSS/g VSS·d
Heterotrophic		
1/2-Velocity Const. (Substrate) @ T = °C	Ks	= 8.0 mg bCOD/L
Heterotrophic Decay Rate @ T = °C	k _d	= (0.12 g VSS/g VSS·d) x (1.04) ^ (T - 20) = 0.10
Heterotrophic Fraction as Cell Debris	f _d	= 0.15
Nitrifier Yield	Y _n	= 0.12 g VSS/g VSS·d
Influent Substrate Concentration	S _n	= bCOD = <u>553</u> mg bCOD/L
		= <u>553</u> mg bCOD/L

43.0 mg/L

=

= = (553 mg/L) x (30.0 %) **166** mg/L

Influent Flow Regime			AVERAGE ANNUAL FLOW Q _{AA}				
Influent Flow	Q _{AA}	=	500,000 gpd 1,893 m ³ /d		Q _{MMF}	=	750,000
Target SRT	SRT	=	2.0E+66 24.6 d		SRT _M	=	2,839 -5.4E+49 14.1 d
Effluent Substrate Concentration			$K_{s}[1 + (k_{d}) SRT_{ab}]$				K _s [1 + (k _d)SRT
	S _{AA}	=	$SRT_{AA}(\mu_m \cdot k_d) - 1$		S _M	=	$R_{sl} = r_{ml} (\mu_m - k_d)$
		=	0.27 mg bCOD/l			=	0.33 mg hCOD/I
Eq. 4 Heterotrophic Biomass	A _{AA}	=	$\frac{Q_{AA}Y(S_o - S_{AA})}{1 + (k_d)SRT_{AA}}$		A _M	=	Q _M Y(S _o - S _M 1 + (k _d)SRT ₁
		= =	137.5 kp VSS/d 303.1 lb VSS/d			= =	295.0 kø/d 650.3 lb/d
Eq. 5 Cell Debris	В _{АА}	=	(f _d)(k _d)Q _{AA} Y(S ₀ - S _{AA})SRT _{AA} 1 + (K ₀)SRT _{AA}		B _M	=	
		= =	50.0 kø VSS/d 110.2 lb VSS/d			= =	61 7 kø VSS/d 135.9 lb VSS/d
Eq. 6 Nitrifier Biomass	CAA	=	$\frac{Q_{AA}Y_{n}(NO_{x})}{1 + (k_{dn})SRT_{AA}}$		C _M	=	Q _M Y_n(NO _x] 1 + (k _{dn})SR1
		=	2 1 kø VSS/d 4 7 lb VSS/d			=	4.8 k# VSS/d 10.5 lb VSS/d
Eq. 7 Sludge Biomass Production	P _{x.bio.aa}	=		TKN - NH4e - (0.12 x P _{x.bio} / Q _M)	P _{x.bio.M}	=	A _M + B _M + C _M
		=	189.6 kg VSS/d = 418.0 Ib VSS/d Difference =	46.3 mg/L 0.0		=	361.4 kg VSS/d 796.7 lb VSS/d
Eq. 8 Sludge VSS Production	Ρ _{χ νςς άδ}	= =	P _v hio a.a + Q _{da} (hbVSS) 224.3 kg VSS/d 494.5 lb VSS/d		P _{x vss m}	=	P _{v bin M} + Q _{ADMM} (nbVSS) 413.5 911.6 Ib VSS/d
Eq. 9 Sludge TSS Production	P _{x. TSS. AA}	=	$\frac{(P_{x, bin, AA})/0.85 + Q_{AA}(nbVSS) + Q_{AA}(iTSS)}{(iTSS)}$		P _{x.TSS.M}	=	$(P_{x, \text{bio. M}})/0.85 + Q_{M}(\text{nbVSS}) + Q_{M}(\text{iTSS})$
		=	378.3 kg TSS/d 834.1 lb TSS/d			=	658.1 kg TSS/d 1,450.9 lb TSS/d
	P _{V. TSS. AA}	= = =	(P _x TCS Ak) / (MLSS _{Membrane}) 33.6 m ³ /d 8,883.8 gpd		P _{V. TSS. M}	= = =	(P _{x TSS M}) / (MLSS _{Membrane}) 58 5 15,453.4 gpd
Observed Yield	(P _{X. TSS. AA}) Q _{AA} BOD	=	0.58 lb TSS / lb BOD		(P _{x.TSS.M}) Q _M BOD	=	0.67 lb TSS / lb BOI
MLSS Mass	X _{MLSS}	=	XMILSS Aer + XMILSS Anor + XMILSS Mem				
		=	20,498.3 lbs				
Calculated SRT	SRT	=	(X ₆₀₁ s;) / (P, TSC AA) 24.6 d		SRT _M	=	(X _{MI SS}) / (P _{x TSS M}) 14.1 d
	Difference	=	0.0 d		Difference	=	0.0 d
MLVSS Mass	X _{MLVSS}	=	X _{MUVSS Aer} + X _{MUVSS Aer} + X _{MUVSS Mem} 14,143.8 Ibs AAF Membrane Hydraulic F				
F/M Ratio	F/M _{AA}	= =	Q _{a.a} BOD / X _{MI VSS} w/o Redundancy = (500,000 gpd)/(51,6		F/M _M	= =	Q _M BOD / X _{MI VSS} 0.15 1/d
Hydraulic Residence Time	τ	=		gfd	τ_{M}	=	$\tau_{Aer.M} + \tau_{Anox.M} + \tau_{Mem.M}$
Sludge Press Operation		=		gpm		=	7.9 hr
WAS Percent Solids Press Cake Percent Solids	Yw Yc	=	1.125 % Solids SG _{WAS} = 1.02 15.0 % Solids SG _{rAKF} = 1.07	Weekly Operation Daily Operation	=	0	days/week hours/day
Weekly Dry Solids Production	P _{V TSS AA}	=	<u>(8884 gpd) x (7 d/wk</u>) x (3.785 L/gal) x (1 kg/L) x (1.02) x (0.01125)	baily Operation	P _{V TSS M}	=	_(15453 gpd) x (7 d/wk) x (3.785 L/gal) ;
		=	2,701 kg/wk			=	4,698 kg/wk
Daily Processed Dry Solids	P _{was}	= =		kg/h Dry kg/h Wet	P _{was}	= =	(4698 kg/wk) / (0 d/wk) #DIV/0! kg/d
Daily Wet Cake Production	P _{CAKF WFT}	= =	#DIV/0! Press Rate = #DIV/0! #DIV/0! kg/d	kg/n Wet gpm	P _{CAKE WET}	=	#DIV/0! #DIV/0! kg/d
Cake Volume Production	V _{CAKE}	=	#DIV/0! Ib/d		V _{CAKE}	=	#DIV/0! Ib/d
Cake volume Production	♥ CAKE	= = =	#DIV/01 #DIV/01 cf/d #DIV/01 cy/d		¥ CAKE	= = =	#DIV/01 #DIV/01 cf/d #DIV/01 cy/d

PROJECT NAME	West Bonner	DESIG	DESIGN ANNUAL COSTS												
PROJECT NUMBER	CL22-139			cost pe	r KWH	0.1	Industrial Rate per electric	itylocal.com							
DESIGN FLOW (Average GPD) EQUIPMENT	250,000 MEMPAC-M250	Operating Parameter at ADF	Unit	Нр	Daily Hours	Daily Cost	Consumables: Oil, Grease, Item	. Belts, Filters etc. Cost	Spare Parts Annual Budg wear strips, bru Item		Replacement Schedule (years)	Unit cost	Annual Budget for replacement of component	Number of Components Supplied	Total
ASSET	PROCESS							• Con	trol Process						
Electrical Control Panel	MBR Train Equipment Skid			-	-	-									
Control Transmitter	MCC Panel										10	\$4,385.00	\$438.50	1	\$438.50
Touch Screen Computer	MCC Panel			-	-	-					5	\$2,500.00	\$500.00	1	\$500.00
Probe Wash Solenoid	MCC Panel			-	-	-			Rebuild Kit	\$100.00	10	\$500.00	\$50.00	1	\$50.00
Influent Flow Meter	Influent			-	-	-					10	\$4,000.00	\$400.00	1	\$400.00
Dissolved Oxygen Sensor	Process Tank										5	\$2,122.00	\$424.40	2	\$848.80
pH Sensor	Process Tank			-	-	-					5	\$900.00	\$180.00	1	\$180.00
MLSS Probe	Process Tank										5	\$3,989.00	\$797.80	1	\$797.80
Nitrate Sensor	Process Tank										5	\$5,025.00	\$1,005.00	1	\$1,005.00
FAS Feed Flow Meter	Process Tank										10	\$5,600.00	\$560.00	3	\$1,680.00
Level Transducer	Membrane Process										10	\$800.00	\$80.00	3	\$240.00
Permeate Flow Meter	Membrane Process										10	\$2,684.00	\$268.40	3	\$805.20
Permeate Pressure Transducer	Membrane Process										5	\$875.00	\$175.00	3	\$525.00
Membrane CFM Meter	Membrane Process										5	\$1,293.00	\$258.60	3	\$775.80
Level Transducer	Clear Well			-	-	-					10	\$875.00	\$87.50	1	\$87.50
WAS Flow Meter	WAS Process										7	\$2,600.00	\$371.43	1	\$371.43
Effluent Flow Meter	Final Effluent			-	-	-					10	\$4,995.00	\$499.50	1	\$499.50
		-			÷				•				•		
ASSET	PROCESS							Mechar	nical Equipment						
Influent Screen	Screen Platform	695.0	gpm	0.75	6.0	\$0.34			Brushes	\$500.00	15	\$65,000.00	\$4,333.33	1	\$4,333.33
Aeration Blower	Aeration Process	250	scfm	15.0	8.0	\$53.71	Oil and Grease	\$0.00	Belt, Filter	\$0.00	5	\$3,200.00	\$640.00	6	\$3,840.00
FAS Pump	Aeration Process	620	gpm	20.0	8.0	\$35.81	Grease	\$25.00	Parts	\$500.00	10	\$12,500.00	\$1,250.00	3	\$3,750.00
Membrane Cassette	Membrane Process				-						10	\$105,000.00	\$10,500.00	3	\$31,500.00
Permeate Pump	MBR Process	460.0	gpm	7.5	8.0	\$13.43	Oil and Grease	\$50.00	Rebuild Kit/Parts	\$500.00	10	\$9,000.00	\$900.00	3	\$2,700.00
Membrane Blower	MBR Process	300.0	scfm	10.0	16.0	\$35.81	Oil and Grease	\$50.00	Belt, Filter	\$0.00	5	\$3,200.00	\$640.00	3	\$1,920.00
Pressure Relief Equipment	MBR Process						Oil and Grease	\$0.00			7	\$1,500.00	\$214.29	6	\$1,285.71
WAS Pump	WAS Skid	20.0	gpm	0.85	5.0	\$0.63			Rebuild Kit/Parts	\$400.00	7	\$3,530.00	\$504.29	2	\$1,008.57
CIP Chemical Pumps (4 Total)	MBR Train Equipment Skid					\$0.00	Replacement Tubes	\$400.00	Spare Head, valves	\$600.00	5	\$5,184.00	\$1,036.80	6	\$6,220.80
		Annual B	udget	Daily	Power Est.	\$139.73	Consumables	\$525.00	Spare Parts	\$2,600.00				Replacement	\$65,762.95

Annual Estima	ted Power			
Percentage of Average	Daily Flow (GPM)	Daily Power Cost	Days	Total
100%	250,000	\$139.73	365	\$50,999.82
100%	250,000	\$139.73	0	\$0.00
100%	250,000	\$139.73	0	\$0.00
100%	250,000	\$139.73	0	\$0.00
		Total Estima	ated Power Cost	\$50,999.82

Annual Estimated Labor ((Hours)						
Task		Daily (4 Days)	Weekly	Monthly	Quarterly	Annual	Total
Routine Operations	S	2.5	2.5	2.0			
Required Sampling/Ana	alysis			2.0		2.0	
Preventative Equipment Ma	intenance		3.0	4.0	4.0	4.0	
Compliance and Repor	rting			4.0		4.0	
Annual Totals		520	220.0	144.0	16.0	10.0	910
Hourly Rate	\$50.00	\$26,000.00	\$11,000.00	\$7,200.00	\$800.00	\$500.00	\$45,500.00

Annual Estima	ated Chemical				
Chemical	Process	Volume (Gal)	Cost per Gal	No. of Events	Total
Hypochlorite or Equal	Weekly CIP	19.4	\$2.87	52	\$2,895.26
Citric Acid	Weekly CIP	16.2	\$10.95	52	\$9,224.28
Hypochlorite or Equal	Recovery Clean	4	\$2.87	4	\$45.92
Citric Acid	Recovery Clean	4	\$10.95	4	\$175.20
		Тс	otal Estimated An	nual CIP Chemical Cost	\$12,340.66

Units Provided	2	Each Unit	Total
	Equipment Consumables	\$525.00	\$1,050.00
	Equipment Spare Parts	\$2,600.00	\$5,200.00
	Equipment Replacement	\$65,762.95	\$131,525.90
	Power	\$50,999.82	\$101,999.64
	Labor	\$45,500.00	\$91,000.00

PROJECT NAME	West Bonner	DESIG	DESIGN						ANNUAL COSTS							
PROJECT NUMBER	CL22-139			cost pe	cost per KWH 0.1 Industrial Rate per electricitylocal.com											
DESIGN FLOW (Average GPD) EQUIPMENT	250,000 MEMPAC-M250	Operating Parameter at ADF	Unit	Нр	Daily Hours	Daily Cost	Consumables: Oil, Greas		Spare Parts Annual Budg wear strips, bru Item		Replacement Schedule (years)	Unit cost	Annual Budget for replacement of component	Number of Components Supplied	Total	
	Membrane CIP Chemicals Annual Estimate		\$24,681.31 \$355,456.85													
	Operating Cost per 1,000 gallons of Capacity	\$710.91	\$1,421.83													

PROJECT NAME	West Bonner	DESIG	iN						ANNUAL CO	STS					
PROJECT NUMBER	CL22-139			cost pe	er KWH	0.1	Industrial Rate per electric	citylocal.com							
Daily Sum of WAS from Both									Spare Parts Annual Budge	et: Seals, bearings,	Replacement		Annual Budget for	Number of	
MEMPAC-M Units	9,000	Operating			Daily		Consumables: Oil, Grease				Schedule	Unit cost	replacement of	Components	
EQUIPMENT	DRYPAC	Parameter at ADF	Unit	Нр	Hours	Daily Cost	Item	Cost	Item	Cost	(years)		component	Supplied	Total
ASSET	PROCESS		Control Process												
Press Feed Flow Meter	Sludge Storage			-	-	-					10	\$2,500.00	\$250.00	1	\$250.00
Level Transducer	Sludge Storage										10	\$800.00	\$80.00	1	\$80.00
		-		-	•		<u> </u>		-		-			-	
ASSET	PROCESS							Mechani	ical Equipment						
Aeration Blower	Sludge Storage	140	scfm	2.0	8.0	\$2.39	Oil and Grease	\$0.00	Belt, Filter	\$0.00	5	\$1,500.00	\$300.00	2	\$600.00
Transfer Pump	Sludge Storage	20	gpm	2.0	8.0	\$1.19	Grease	\$25.00	Spare Parts	\$500.00	10	\$4,650.00	\$465.00	1	\$465.00
Sludge Press	Sludge Drying	20.0	gpm	3.0	8.0	\$1.79			Rebuild Kit/Parts	\$1,000.00	20	\$85,000.00	\$4,250.00	1	\$4,250.00
Polymer System	MBR Process		gpm	0.0	0.0	\$0.00	Oil and Grease	\$50.00	Rebuild Kit/Parts	\$500.00	10	\$12,000.00	\$1,200.00	1	\$1,200.00
								•						_	
		Annual B	udget	Dail	Power Est.	\$5.37	Consumables	\$75.00	Spare Parts	\$2,000.00		Replacement	\$6,845.00		

•

•

Annual Estima	ated Power			
Percentage of Average (From MEMPAC)	Daily Flow (GPM)	Daily Power Cost	Days	Total
100%	9,000	\$5.37	365	\$1,960.49
100%	9,000	\$5.37	0	\$0.00
100%	9,000	\$5.37	0	\$0.00
100%	9,000	\$5.37	0	\$0.00
Average Sludge Production	9,000	Total Estimated	Power Cost	\$1,960.49

Annual Estimated Labor (Hour	s)						
Task		Daily (4 Days)	Weekly	Monthly	Quarterly	Annual	Total
Routine Operations	1.0	2.0					
Required Sampling/Analysis							
Preventative Equipment Mainten		1.0	2.0	3.0	3.0		
Compliance and Reporting							
Annual Totals	208	120.0	24.0	12.0	3.0	367	
Hourly Rate	\$50.00	\$10,400.00	\$6,000.00	\$1,200.00	\$600.00	\$150.00	\$18,350.00

Annual Estimated Chemical									
Chemical	Process	AVG lbs/dry ton	Est. Dry Tons	lbs Polymer	Polymer cost per lb	Total			
Polymer	Sludge Dewatering	12	137	1,644	\$0.40	\$657.53			
Total Estimated Annual CIP Chemical Cost									

Equipment Consumables	\$75.00
Equipment Spare Parts	\$2,000.00
Equipment Replacement	\$6,845.00
Power	\$1,960.49
Labor	\$18,350.00
Chemicals	\$657.53
Annual Estimate	\$29,888.01

PROJECT NAME	West Bonner	DESIG	iN			ANNUAL COSTS									
PROJECT NUMBER	CL22-139			cost pe	er KWH	0.1	Industrial Rate per electric	itylocal.com							
DESIGN FLOW (Average GPD) ASSET	250,000 PROCESS	Operating Parameter at ADF	Unit	Нр	Daily Hours	Daily Cost	Consumables: Oil, Grease		Spare Parts Annual Bud wear strips, br Item		Replacement Schedule (years)	Unit cost	Annual Budget for replacement of component	Number of Components Supplied	Total
ASSET	PROCESS	Farameter at ADF	Unit	пр	Hours	Daily Cost	item		ntrol Process	COSL	(years)		component	Supplied	Total
Effluent Flow Meter	Effluent Disposal	1	[.		[I T	Con	Infor Process	[10	\$2,500.00	\$250.00		\$250.00
				-	-	-					-				
Level Transducer	Effluent Storage										10	\$800.00	\$80.00	1	\$80.00
ASSET	PROCESS							Mechar	nical Equipment						
Effluent Pump	Effluent Disposal	400	gpm	10.0	8.0	\$11.94	Oil and Grease	\$0.00	Spare Parts	\$500.00	10	\$4,500.00	\$450.00	2	\$900.00
							<u> </u>		-						
		Annual B	udget	Daily	Power Est.	\$11.94	Consumables	\$0.00	Spare Parts	\$500.00		Replacement	\$1,230.00	1	
		-							•		•				
Annual Estin	nated Power														
Percentage of Average	Daily Flow (GPM)	Daily Power Cost	Days	То	tal										
100%	250,000	\$11.94	365	\$4,3	56.64										
100%	250,000	\$11.94	0	\$0	.00										
100/0	250,000	VII.	•	ΨŲ	.00										

Annual Estimated La	bor (Hours)						
Task		Daily (4 Days)	Weekly	Monthly	Quarterly	Annual	Total
Routine Opera		0.5					
Required Sampling							
Preventative Equipment			1.0	1.0	1.0		
Compliance and R							
Annual Tota	0	20.0	12.0	4.0	1.0	37	
Hourly Rate	\$50.00	\$0.00	\$1,000.00	\$600.00	\$200.00	\$50.00	\$1,850.00

\$11.94

0 **Total Estimated Power Cost** \$0.00

\$4,356.64

Annual Estimated Chemical									
Chemical	Process	Volume (Gal)	Cost per Gal	No. of Events	Total				
					\$0.00				
		T	otal Estimated An	nual CIP Chemical Cost	\$0.00				

Equipment Consumables	\$0.00
Equipment Spare Parts	\$500.00
Equipment Replacement	\$1,230.00
Power	\$4,356.64
Labor	\$1,850.00
Chemicals	\$0.00
Annual Estimate	\$7,936.64

250,000

100%

PROJECT NAME	West Bonner	DESI	GN						ANNUAL	COSTS					
PROJECT NUMBER	CL22-139			cost pe	er KWH	0.1	Industrial Rate per electricitylocal.com								
Average Daily Sludge EQUIPMENT	250,000 UV DISINFECTION	Lamps per Unit	kW per Lamp	kW per hr of operation	Daily Hours	Daily Cost			Spare Parts Annual Bud wear strips, bu Item		Replacement Schedule (years)	Unit cost	Annual Budget for replacement of component	Number of Components Supplied	Total
UVLW-30800-24	Disinfection	30	0.8	24.0	20.0	\$48.00					15	\$110,000.00	\$7,333.33	1	\$7,333.33
								•	Wiper Rings		1	\$34.00	\$34.00	20	\$680.00
									Quartz Sleeves		8	\$414.00	\$51.75	30	\$1,552.50
									Thimble Support Seals		8	\$47.00	\$5.88	30	\$176.25
									Electronic Ballasts		5	\$580.00	\$116.00	30	\$3,480.00
	÷		•		•	•	•				•			•	-
		Annual	Budget	Daily	/ Power Est.	\$48.00	Consumables	\$0.00	Spare Parts	\$0.00		Replacement	\$13,222.08		

Annual Estin	Annual Estimated Power												
Percentage of Average	Daily Flow (GPM)	Daily Power Cost	Days	Total									
100%	250,000	\$48.00	365	\$17,520.00									
100%	250,000	\$48.00	0	\$0.00									
100%	250,000	\$48.00	0	\$0.00									
100%	250,000	\$48.00	0	\$0.00									
	\$17,520.00												

Annual Estimated Labor (Hours)							
Task		Daily (4 Days)	Weekly	Monthly	Quarterly	Annual	Total
Routine Operations							
Required Sampling/Analysis							
Preventative Equipment Maintenance	Preventative Equipment Maintenance		2.0				
Compliance and Reporting							
Annual Totals		0	80.0	0.0	0.0	0.0	80
Hourly Rate	\$50.00	\$0.00	\$4,000.00	\$0.00	\$0.00	\$0.00	\$4,000.00

Annual Estimat	ed Chemical				
Chemical	Process	Volume (Gal)	Cost per Gal	No. of Events	Total
					\$0.00
Total Estimated Annual CIP Chemical Cost					

Units Provided with Package	2	Each Unit	Total
	Equipment Consumables	\$0.00	\$0.00
	Equipment Spare Parts	\$0.00	\$0.00
	Equipment Replacement	\$13,222.08	\$26,444.17
	Power	\$17,520.00	\$35,040.00
	Labor	\$4,000.00	\$8,000.00
	Chemicals	\$0.00	\$0.00
	Annual Estimate per UV Unit	\$34,742.08	\$69,484.17

PROJECT NAME	West Bonner
PROJECT NUMBER	CL22-139

	MEMPAC	DRYPAC	Effluent Pump	UV	Totals
Equipment Consumables	\$1,050.00	\$75.00	\$0.00	\$0.00	\$1,125.00
Equipment Spare Parts	\$5,200.00	\$2,000.00	\$500.00	\$0.00	\$7,700.00
Equipment Replacement	\$131,525.90	\$6,845.00	\$1,230.00	\$26,444.17	\$166,045.06
Power	\$101,999.64	\$1,960.49	\$4,356.64	\$35,040.00	\$143,356.77
Labor	\$91,000.00	\$18,350.00	\$1,850.00	\$8,000.00	\$119,200.00
Chemicals	\$24,681.31	\$657.53	\$0.00	\$0.00	\$25,338.84
Annual Estimate	\$355,456.85	\$29,888.01	\$7,936.64	\$69,484.17	\$462,765.67

•

Estimate assumes the system is operating at average daily flow 365 days per year.

Appendix I – Gravity-Settling Package Treatment Plant Design Criteria Calculations

- Sequox[®] ClarAtor[®] SR Diffuser Access System

DDptimizer^{**}

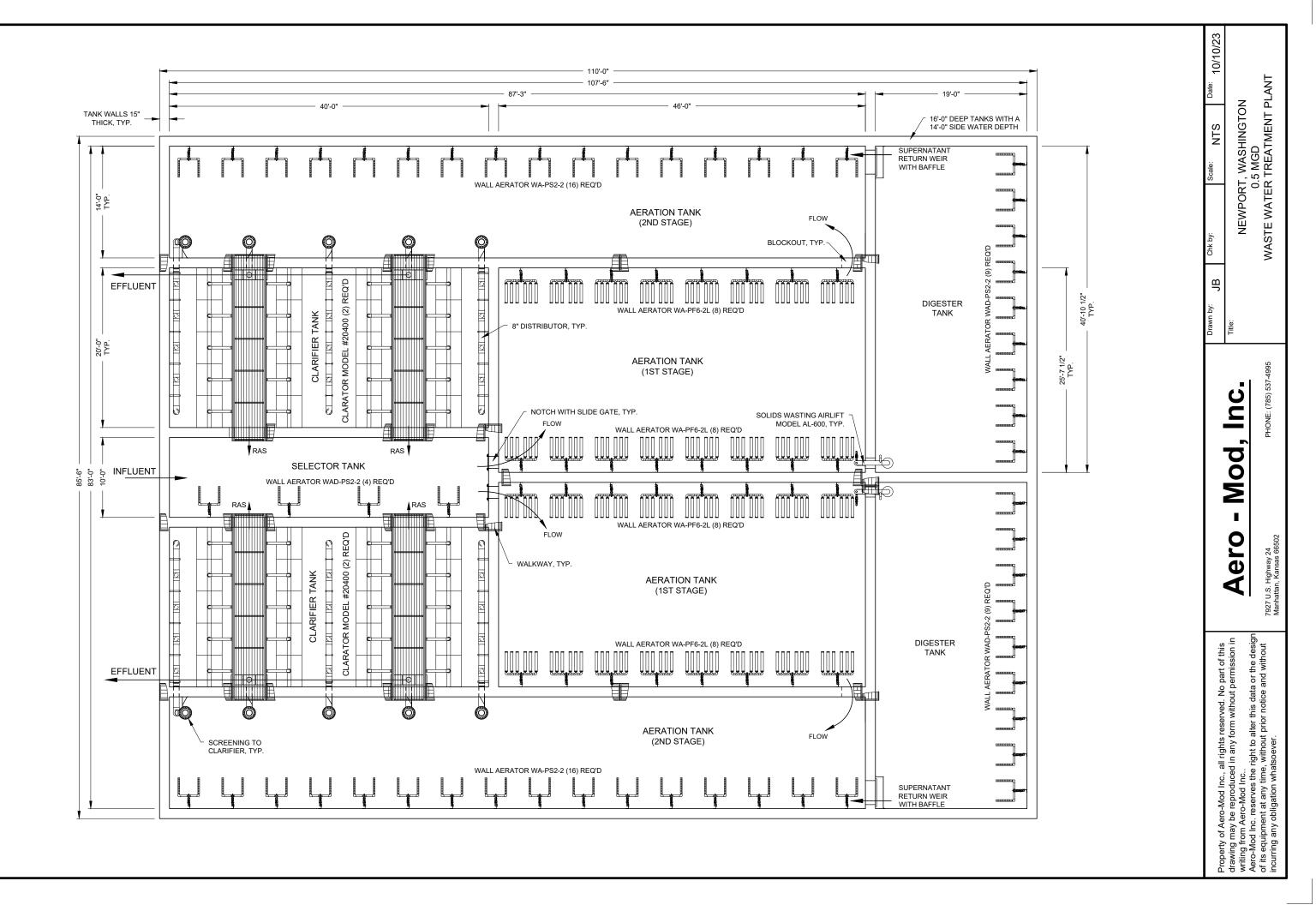
Specializing in Custom Designed Wastewater Treatment Facilities-

Newport, WA

WWTP Proposal

for

JUB Engineers


October 11, 2023

7927 U.S. Highway 24 Manhattan, KS 66502 USA *Ph: (785) 537-4995 www.aeromod.com*

Aero-Mod, Inc. EQUIPMENT AND SERVICES COST ESTIMATE

Project: Engineer:	Newport, WA JUB Engineers	Date: Units:	11-Oct-23 English
<u>EQUIPME</u>	NT SUPPLIED		
2 4	Acration pd blower/sound enclosure package, 100 HP - 460 V, 3 ph SEQUOX aeration control butterfly valve, pneumatically-actuated		
2 2 32 32		e Aeration B	
SELECTO	R TANK EQUIPMENT		
1 1 4	Aeration control butterfly valve, pneumatically-actuated Aeration throttling butterfly valve, gear-operated Wall mounted aeration assembly, Model WAD-HSS2A		
CLARIFIEI 2	R & RAS EQUIPMENT Aero-Mod Split-ClarAtor Clarifier System - 800 sf/each		
	N, SLUDGE HOLDING & WAS EQUIPMENT		
2	WAS airlift pump, Model AL-600		
2 2	Aeration control butterfly valve, pneumatically-actuated Aeration control butterfly valve, electrically-actuated		
2	Aeration flow conditioner/flow sensor/SS flanged pipe spool		
18	Wall mounted aeration assembly, Model WAD-PS4-2		
	AL & CONTROLS EQUIPMENT	orioo 115V	
1 2	SEQUOX Process Control Panel w/ Allen Bradley PLC, Model SQC-100 S Blower control panel w/ Allen Bradley 6-pulse VFD - 460 V, 3 ph	enes - 115 v	
2	Air compressor, 2.0 HP with 80 gallon tank & auto-drain - 460 V, 3 ph		
1 1	Air compressor alternation panel - 460 V Regenerative desiccant dryer mounted on 60 gal dry storage tank - 115 V	wall outlet	
1	D.O. Control System - probe analyzer & sunshield w/ rail-mounted sensor		
ANCILLAF	RY EQUIPMENT		
340 2	Wall mounted walkway & handrail, LF Wall mounted stop plates & frames		
LS	2 SS wall-mounted frames 2 Aluminum stop plates Spare Parts		
LS	Interior tank installation materials - SS brackets, SS bolts, PVC wall inserts	s, pneumatic	tubing, misc.
SERVICES	i		
LS	Freight to jobsite	1	
LS LS	Aero-Mod equipment dry inspection/equipment start-up & training, two (2) Aero-Mod PLC startup & training, two (2) days	days	
LS	Aero-Mod biological training, two (2) days		
LS	Operator training school - 2 days at Aero-Mod facilities in Manhattan, KS		
	TOTAL EQUIPMENT COST		\$1,370,000
	EST'D INSTALLATION of Aero-Mod EQUIPMENT by Contu (Includes Interior Tank PVC Piping)	ractor	\$330,000
	ESTIMATED CONCRETE TANK COST by Contractor Concrete for Tank Walls, cy 628		\$1,320,000
	Installed Concrete Cost, \$/cy \$1,200		
	Concrete for Tank Slab, cy 544		
	Installed Concrete Cost, \$/cy \$950 Grout for Clarifier Bottom, cy 50		
	Installed Concrete Cost, \$/cy \$850		
			\$3,020,000
	ESTIMATED COST		 \$3,0∠0,000
<u>PLEASE N</u>	IOTE THE FOLLOWING		

- Buildings, site work, and auxiliary equipment are not included within this estimate.
 No RAS pump station and associated electrical requirements are required.
- 3. Yard piping is not required between each Aero-Mod tank.
- 4. All associated walkways & handrail for the clarifier and tankage are included in the above estimate.
- 5. This estimate is valid for 90 days from the above date.

Aero-Mod, Inc. ACTIVATED SLUDGE DESIGN CALCULATIONS

11-Oct-23

English

Date: Units:

Project:	Newport, WA	
Engineer:	JUB Engineers	;
Act. Sludge	Process:	SEQUOX BNR

DESIGN CONDITIONS & PARAMETERS

	ADF	Clarifier		
	Influent	Effluent		
Flow (Q), MGD	0.500		Aeration Basin	
BOD ₅ , mg/l	235	10.0	Retention Time, hours	24.0
BOD ₅ , lbs/day	980	41.7	Aeration Tank Volume, Mgal	0.500
BOD _L , mg/l	344		MCRT, days	20.0
TSS, mg/l	275	15.0	Wastewater Temperature, °C	15
TSS, lbs/day	1,147	62.6	Aerobic Digester	
Ammonia-N, mg/I (as TKN)	45	1.0	Volume, % of Aeration Tank	32.0
Ammonia-N, lbs/day (as TKN	188	4.2	Maximum Solids Conc., mg/l	12,000
TN, mg/l (assumes rDON <	< 1.0 mg/l)	10.0	Maximum Solids Conc., %	1.20%
TN, lbs/day		41.7	Digester Temperature, ^o C	15
Phosphorus-P, mg/l	6.0	N/A	Sludge Holding Tank	
Phosphorus-P, lbs/day	25	N/A	Volume, % of Aeration Tank	0.0
Net Alkalinity Loss, mg/l as 0	CaCO ₃	(195)	Maximum Solids Conc., mg/l	25,000
			Maximum Solids Conc., %	2.50%

PROJECTED OPERATING CONDITIONS - AERATION BASIN

Mixed Liquor Suspended Solids, mg/l		3,469
Excess MLSS due to Phos-P Uptake/Removal, mg/l	0	
Mixed Liquor Volatile Suspended Solids, %		71%
F/M Ratio, lbs BOD ₅ /lb MLVSS		0.10
F/M Ratio, lbs BOD ₅ /lb MLSS		0.07
Organic Loading, lbs BOD ₅ /1000 cf of tank/day		14.7
Oxygen Requirements (Carbonaceous), mg/l/hr		9.17
Oxygen Requirements (Nitrogenous), mg/l/hr		8.43
Solids Production, lbs/day		723
WAS - Solids Wasted per Day, lbs/day		661
WAS - Solids Wasted per Day, gal/day @ 0.35%		22,838

PROJECTED OPERATING CONDITIONS - AEROBIC DIGESTER

Volatile Solids Loading in Digester, lbs VSS/1,000 cf of tank/day	22
Volatile Solids Reduction in Digester, %	28%
Solids Wasted from Digester, lbs/day	532
Mass Solids Yield in Process & Digester per Mass Influent BOD ₅ , %	61%
Volume Wasted from Digester, gallons/day	5,312
Digester Sludge Age, days	30
Air Required for Stabilization, scfm	196
Air Required for Mixing @ 30 cfm/1000 cf	642

Aero-Mod, Inc.

•	Newport, W/ JUB Engine / pe Used:	ers	DM Fine Bubl	ble				Date: Units:	11-Oct-23 English
			Design	Peak				Design	Peak
Q, MGD			0.50	0 N/A	TKN _o , m	g/l		45.0	N/A
BOD₀, mg	g/l		23	5 N/A	TKN _{assim}	_{lation} , mg/l		9.7	N/A
BOD _{rem} , n			23	5 N/A	TKN _{rem} ,			45.0	N/A
BOD _{rem} , II			98	0 N/A	TKN _{rem} ,	-		187.7	N/A
	rement, lb O_{2^i}	/lb BOD _{rem}	1.50				O ₂ /lb TKN _{rem}	4.60	
					2 1		2 1011	Dealar	Deals
ERATION	I REQUIREM	ENIS-FIRS	SISIAGE			Remo	val in First Stage	Design 70%	Peak 70.0%
BOD _{oxy} -	Oxygen Req	uired for BC	DD [Q * BOD _{re}	_{em} * 8.34 * O ₂ R	Req. / 24], lb	os O ₂ /hr		42.9	N/A
TKN _{oxy} -	Oxygen Req	uired for TKN	V [Q * TKN _{rem}	* 8.34 * O ₂ Re	q. / 24], lbs	O ₂ /hr		25.2	N/A
	Actual Oxyg	genation Rat	te (AOR), Ibs	O ₂ /hr				68.0	N/A
	Standard O	vuganation	Rate (SOR), I	lbs O./br				172.4	N/A
				⁾⁾ * (Tau * Ω * β	° * C _{s,20} - C _l	.))]		172.4	N/A
Where:	C _{s,T,H} Actual	Value of D.O. S	Saturation, mg/l		9.08	CL	Residual D.O.	Conc., mg/l	2.0
			D.O. Saturation	, mg/l	9.08	т	Temperature o	f Water, °C	20
	Tau Oxyger	n Saturation Va	lue (C _{s,T,H} /C _{s,20})		1.000	F			
	lpha Alpha -	- Oxygen Trans	fer Correction Fa	actor for Waste	0.60	Θ	Theta - Oxyger	n Transfer Coeff	1.024
	•		e Tension Correc		0.95		Site Elevation,		2,160
	P _H Atmos	pheric Pressure	e at Site Elevatio	n, psi	13.59	Ω	Omega (P _H /P _s))	0.924
Air Requ	uirement = [SOR / (Oxyg	en Density *	TE% * Diffuse	r Depth) / 6	60], scfm		702	N/A
Where:	Oxygen Densit	-			0.0175	Diffuser De	epth Below Water	r Surface, ft	13.0
	Transfer Efficie	ency per Foot of	f Submergence,	%	1.80%				
Denitrifi	ication Credi	it = [Air Rqm	nt * (TKN _{oxy} / /	AOR) * 50% * ((TKN _o - TN	e) / TKNo)]	, scfm	101	N/A
Where:									
where.	$TN_e = TKN_o / 2$	(assumed whe	en D.O. control is	s not used)					
where.	TN _e = TKN _o / 2				n Basin, so	fm		601	N/A
				s not used) i red in Aeratio i	n Basin, so	fm		601	N/A
Air Corr	ection	Total Ae	eration Requi				_{.td} * SVP _{std}))) [;]		N/A
Air Corr	rection scfm / [((T _{st}	Total Ae	eration Requi	red in Aeratio	/P _{Tair})) / (14	.7 - (RH% _s	_{td} * SVP _{std}))) *		N/A
Air Corr icfm =	rection scfm / [((T _{st}	Total Ae _d + 460) / (T _a	eration Requi _{air} + 460)) * ((P	ired in Aeration P _H - (RH% * SV Maximum Air Te	/P_{Tair})) / (14 emperature, ^c	. 7 - (RH%_s F	_{td} * SVP _{std})))	* ((P _A / P _H)] 104	N/A
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std}	Total Ae d + 460) / (T a 68 36%	eration Requi _{hir} + 460)) * ((F T _{air} RH%	red in Aeration P _H - (RH% * SV Maximum Air To Maximum Relat	(P _{Tair})) / (14 emperature, ^c tive Humidity,	.7 - (RH%_s F %		* ((P _A / P _H)] 104 90%	N/A
Air Corr icfm =	rection scfm / [((T _{st}	Total Ae _d + 460) / (T _a 68	eration Requi _{air} + 460)) * ((F T _{air} RH% SVP _{Tair}	red in Aeration P _H - (RH% * SV Maximum Air Ti Maximum Relat Saturated Vapo	/P_{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of	. 7 - (RH%₅ F % Air @ T _{air} , p:	si	* ((P _A / P _H)] 104 90% 1.058	N/A
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std}	Total Ae d + 460) / (T a 68 36%	eration Requi _{hir} + 460)) * ((F T _{air} RH%	red in Aeration P _H - (RH% * SV Maximum Air To Maximum Relat	/P_{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of	. 7 - (RH%₅ F % Air @ T _{air} , p:	si	* ((P _A / P _H)] 104 90%	N/A
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (T _a 68 36% 0.34 • Air Required	eration Requi _{air} + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph n First Stage Ae	(P _{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of neric Pressure eration Bas	. 7 - (RH% s F % Air @ T _{air} , ps e after Blower n, cfm	si r Inlet, psi	* ((P _A / P _H)] 104 90% 1.058 13.39 330	Side Roll
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (T _a 68 36% 0.34 0.34 0 Air Required 0 Air Required	eration Requi _{hir} + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of neric Pressure eration Bas rd Stage Ad	. 7 - (RH% F % Air @ T _{air} , p: after Blower n, cfm eration Bas	si r Inlet, psi sin, cfm	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342	
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (T _a 68 36% 0.34 0.34 0 Air Required 0 Air Required	eration Requi _{hir} + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph n First Stage Ae	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of neric Pressure eration Bas rd Stage Ad	. 7 - (RH% F % Air @ T _{air} , p: after Blower n, cfm eration Bas	si r Inlet, psi sin, cfm	* ((P _A / P _H)] 104 90% 1.058 13.39 330	Side Roll
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (T _a 68 36% 0.34 0.34 0 Air Required 0 Air Required	eration Requi _{hir} + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of neric Pressure eration Bas rd Stage Ad	. 7 - (RH% F % Air @ T _{air} , p: after Blower n, cfm eration Bas	si r Inlet, psi sin, cfm	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342	Side Roll
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (T _a 68 36% 0.34 • Air Required Air Required Minimum Ai	eration Requi _{hir} + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in	P _H - (RH% * SV Maximum Air Ti Maximum Relat Saturated Vapo Actual Atmosph n First Stage Ae Second & Thin r Operating Ful	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of neric Pressure eration Bas rd Stage Ad	F % Air @ T _{air} , pa e after Blower n, cfm eration Bas I (mixing require	si r Inlet, psi sin, Cfm ement for 24 hrs)	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029	Side Roll Side Roll
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (T _a 68 36% 0.34 • Air Required Air Required Minimum Ai	eration Requi air + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in ir Required fo essure, in. H ₂	P _H - (RH% * SV Maximum Air Ti Maximum Relat Saturated Vapo Actual Atmosph n First Stage Ae Second & Thin r Operating Ful	(P _{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad Il Plant, cfm	F % Air @ T _{air} , pa e after Blower n, cfm eration Bas I (mixing require	si r Inlet, psi sin, Cfm ement for 24 hrs)	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design	Side Roll Side Roll <u>Peak</u>
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum	Total Ae d + 460) / (Ta 68 36% 0.34 Air Required Air Required Minimum Ai	eration Requi air + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in ir Required fo essure, in. H ₂	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph Actual Atmosph First Stage Ae Second & Thin r Operating Ful	(P _{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad Il Plant, cfm	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bas I (mixing require <u>Design</u>	si r Inlet, psi sin, cfm ment for 24 hrs) <u>Peak</u>	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4	Side Roll Side Roll <u>Peak</u> 204 7.4
Air Corr icfm =	rection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum Minimum	Total Ae d + 460) / (Ta 68 36% 0.34) Air Required Air Required Minimum Ai Aeration Pre psi, std	eration Requi air + 460)) * ((F T _{air} RH% SVP _{Tair} P _A d for Mixing in ir Required fo essure, in. H ₂ (does not inclu	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph Actual Atmosph First Stage Ae Second & Thin r Operating Ful	(P _{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad Il Plant, cfm	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> scfm	si r Inlet, psi sin, cfm ment for 24 hrs) <u>Peak</u> scfm	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 <u>Design</u> 204 7.4 icfm	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm =	ection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum Minimum	Total Ae Total Ae a + 460) / (Ta 68 36% 0.34 0 Air Required Minimum Ai Aeration Pre psi, std sin - Fine Bul	eration Requi air + 460)) * ((I T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in ir Required fo essure, in. H ₂ (does not inclu bble	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph Actual Atmosph First Stage Ae Second & Thin r Operating Ful	(P _{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad Il Plant, cfm	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bas I (mixing require Design <u>Design</u> Scfm	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 <u>Design</u> 204 7.4 icfm	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm =	ection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum Minimum	Total Ae Total Ae Total Ae 68 36% 0.34 0.35 0.3	eration Requi air + 460)) * ((I T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in ir Required fo essure, in. H ₂ (does not inclu bble	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph Actual Atmosph First Stage Ae Second & Thin r Operating Ful	(P _{Tair})) / (14 remperature, ⁶ tive Humidity, or Pressure of neric Pressure reation Bas rd Stage A II Plant, cfrr et)	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> scfm	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 9 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 <u>Design</u> 204 7.4 icfm 752 586	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm =	ection scfm / [((T _{st} T _{std} , °F RH% _{std} SVP _{std} , psi Minimum Minimum	Total Ae Total Ae 68 36% 0.34 0.35 0.34 0.35 0.34 0.35 0	eration Requi air + 460)) * ((I T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in ir Required fo essure, in. H ₂ (does not inclu bble	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph n First Stage Ae Second & Thii r Operating Ful O de blower inlet/outle	(P _{Tair})) / (14 remperature, ⁶ tive Humidity, or Pressure of neric Pressure reation Bas rd Stage A II Plant, cfrr et)	.7 - (RH%s F % Air @ T _{air} , pa e after Blower n, cfm eration Bas I (mixing require Design Design scfm 60° 465	si r Inlet, psi sin, cfm ment for 24 hrs) Peak scfm 1 0 0 1 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm =	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Minimum Ai Aeration Proposi, std sin - Fine Bul sin - Coarse ester Tank on Tank	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph Actual Atmosph Actual Atmosph Second & Thin r Operating Ful O de blower inlet/outle (sequenced a	(P _{Tair})) / (14 remperature, ⁶ tive Humidity, or Pressure of neric Pressure reation Bas rd Stage A II Plant, cfrr et)	7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 60° 469 322 56	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 9 0 1 0 5 0 0 0 0 0 0 0 0 0 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm =	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Minimum Ai Aeration Proposi, std sin - Fine Bul sin - Coarse ester Tank on Tank	eration Requi air + 460)) * ((I T _{air} RH% SVP _{Tair} P _A d for Mixing in d for Mixing in ir Required fo essure, in. H ₂ (does not inclu bble	red in Aeration P _H - (RH% * SV Maximum Air Ti Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O de blower inlet/outle (sequenced a	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) et)	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 00 87	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm =	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Minimum Ai Aeration Proposi, std sin - Fine Bul sin - Coarse ester Tank on Tank	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Ti Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O de blower inlet/outle (sequenced a	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 60° 469 322 56	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0	Side Roll Side Roll <u>Peak</u> 204 7.4 icfm
Air Corr icfm = Where:	Aeration Base Aeration Base Aeration Base Aerobic Dige Selector Tar Post Aeratio Clarifier RAS	Total Ae Total Ae 68 36% 0.34 0.35 0.34 0.34 0.35 0.34 0	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tu Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O (sequenced a (sequenced a) Total Air	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 0 1 0 2 0 1 0 3	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0 87 1,802 2,123	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aerobic Dig Selector Tar Post Aeratio Clarifier RAS	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Air Required Minimum Ai Aeration Proposition Aeration Proposition Sin - Fine Bull sin - Coarse ester Tank S Airlift Pump	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O de blower inlet/outle (sequenced a 's Total Air Total Air Total Air	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak scfm 1 0 2 0 1 0 2 0 3 	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0 87 1,802 2,123 Power	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Air Required Air Required Air Required Air Required bin Air Required Air A	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O de blower inlet/outle (sequenced a 's Total Air Total Air Total Air	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 2 0 1 0 2 0 3 1 0 2 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0 87 1,802 2,123 Power 64.0	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas Aeration Bas Aerobic Dige Selector Tar Post Aeratio Clarifier RAS	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Air Required Air Required Air Required isin - Coarse ester Tank S Airlift Pump TS ower for Aera ower for Dige	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Ti Maximum Relat Saturated Vapo Actual Atmosph First Stage Aet Second & Thin r Operating Ful O de blower inlet/outle (sequenced a 's Total Air Total Air Total Air	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak scfm 1 0 2 0 1 0 2 0 3 	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0 87 1,802 2,123 Power	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aerobic Digg Selector Tar Post Aeratio Clarifier RAS	Total Ae Total Ae d + 460) / (Ta 68 36% 0.34 0 Air Required Minimum Ai Aeration Pro psi, std sin - Fine Bul sin - Coarse ester Tank nk on Tank S Airlift Pump (7S) ower for Aera ower for Aera ower for Bio-	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O (sequenced a (sequenced a 's Total Air Total Air Total Air IP on Zone, HP	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak Scfm 1 0 0 2 0 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 1 0 0 3 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 321 56 0 87 1,802 2,123 Power 64.0 15.4	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aerobic Dige Selector Tar Post Aeratio Clarifier RAS EQUIREMEN Operating P Operating P Operating P	Total Ae Total Ae d + 460) / (Ta 68 36% 0.34 0 Air Required Minimum Ai Aeration Pro psi, std sin - Fine Bul sin - Coarse ester Tank nk on Tank S Airlift Pump (7S) ower for Aera ower for Aera ower for Bio-	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thin r Operating Ful O (sequenced a (sequenced a 's Total Air Total Air Total Air IP on Zone, HP	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) =t) =t) =t) =t) =t) =t) =t) =t) =t) =	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak 9 8 9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 586 321 586 0 87 1,802 2,123 Power 64.0 15.4 2.7	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aerobic Dige Selector Tar Post Aeratio Clarifier RAS EQUIREMEN Operating P Operating P Operating P Operating P Operating P	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Minimum Ai Aeration Pre psi, std sin - Fine Bul sin - Coarse ester Tank sin - Coarse ester Tank S Airlift Pump TS ower for Aera ower for Piog ower for Pos ower for Clar ower for Clar ower for Clar	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thii r Operating Ful O (sequenced a rs Total Air Total Air Total Air HP on Zone, HP nk, HP m, HP	(P _{Tair})) / (14 emperature, ^c tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) aeration) Required Available	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak 9 0 1 0 2 1 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 1 0 3 1 0 1 0 3 1 0 1 0 3 1 0 5 1 0 1 0 5 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 Design 204 7.4 icfm 752 586 321 56 0 87 1,802 2,123 Power 64.0 15.4 2.7 0.0 4.2 0.4	Side Roll Side Roll 204 7.4 icfm
Air Corr icfm = Where:	Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aeration Bas Aerobic Dig Selector Tar Post Aeratio Clarifier RAS EQUIREMEN Operating P Operating P Operating P Operating P Operating P	Total Ae Total Ae 68 36% 0.34 Air Required Air Required Air Required Air Required Air Required Air Required i Air Required bin Fine Bul sin - Fine Bul sin - Coarse ester Tank S Airlift Pump TS ower for Aera ower for Dige ower for Clar ower for Clar ower for Pros ower for Pros ower for Pros Operating F	eration Requi	red in Aeration P _H - (RH% * SV Maximum Air Tr Maximum Relat Saturated Vapo Actual Atmosph First Stage Ae Second & Thii r Operating Ful O de blower inlet/outle (sequenced a TS Total Air Total Air Total Air, HP Nk, HP	(P _{Tair})) / (14 emperature, ⁶ tive Humidity, or Pressure of heric Pressure eration Bas rd Stage Ad II Plant, cfm et) 	.7 - (RH%s F % Air @ T _{air} , ps e after Blower n, cfm eration Bass I (mixing require <u>Design</u> 607 469 322 56 (0)	si r Inlet, psi sin, cfm ment for 24 hrs) Peak 9 9 1 0 9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	* ((P _A / P _H)] 104 90% 1.058 13.39 330 342 1,029 <u>Design</u> 204 7.4 icfm 752 586 321 566 0.0 87 1,802 2,123 Power 64.0 15.4 2.7 0.0 4.2	Side Roll Side Roll 204 7.4 icfm

Aero-Mod, Inc. AERATION DESIGN CALCULATIONS

Project:Newport, WAEngineer:JUB EngineersDiffuser Type Used:S	s itainless Steel Coarse B	Bubble				Date: Units:	11-Oct-23 English
AERATION REQUIREMEI	NTS - SECOND & THIR	RD STAGE				Design	Peak
				Remova	al in Second Stage	30%	30.0%
Oxygen Required for BOD	0 [Q * BOD _{rem} * 8.34 * O	₂ Req. / 24], lbs	o ₂ /hr			18.4	N/A
Oxygen Required for TKN	[Q * TKN _{rem} * 8.34 * O ₂	Req. / 24], lbs (⊃₂/hr			10.8	N/A
Actual Oxyge	nation Rate (AOR), Ibs	s O₂/hr				29.2	N/A
Standard Oxy	genation Rate (SOR),	lbs O ₂ /hr				59.1	N/A
SOR = [(AOR * C _{s,20}) / (α * Θ ^{Λ(}	^{τ-20)} * (Tau * Ω '	*β * C _{s,20} -	- C _L))]			
Where: C_{s,T,H} Actual Va	lue of D.O. Saturation, mg/l		9.08	CL	Residual D.O. (Conc, mg/l	2.0
C _{s,20} Steady St	tate Value of D.O. Saturation	n, mg/l	9.08	т	Temperature of	Water, °C	20
Tau Oxygen S	Saturation Value $(C_{s,T,H}/C_{s,20})$		1.000	F			
α Alpha - O	xygen Transfer Correction F	actor for Waste	0.75	Θ	Theta - Oxygen	Transfer Coeff	i 1.024
	linity-Surface Tension Corre		0.95		Site Elevation, I	FASL	2,160
P _H Atmosphe	eric Pressure at Site Elevatio	on, psi/FASL	13.59	Ω	Omega (P _H /P _s)		0.924
Air Requirement = [SOR /	/ (Oxygen Density * TE	% * Diffuser D	epth) / 60]	, scfm		521	N/A
Where: Oxygen Density, I	lbs O ₂ /cf		0.0175	Diffuser	Depth Below Water	r Surface, ft	13.5
Transfer Efficience	y per Foot of Submergence,	, %	0.80%				
Denitrification Credit = [A	•		≺N _o - TN _e)	/ TKN _o)],	scfm	53	N/A
Where: $TN_e = TKN_o / 2$ (a	ssumed when D.O. control i	s not used)					
	Total Aeration Requ	ired in Aeratio	n Basin, s	cfm		469	N/A
	+ 460) / (T _{air} + 460)) * ((-		% _{std} * SVP _{std}))) ⁻		
Where: T _{std} , ^o F	68 T _{air}	Maximum Air T	-			104	
RH% _{std}	36% RH%	Maximum Rela				90%	
SVP _{std} , psi	0.34 SVP _{Tair}	Saturated Vapo	or Pressure of	f Air @ T _{air} ,	psi	1.058	
	P _A	Actual Atmosph	eric Pressur	e after Blov	ver Inlet, psi	13.39	
Minii	mum Air Required for N	lixing in Second	I & Third S	tage Aera	ition Basin, cfm	342	Side Roll
	Aeration P	ressure, in. H ₂ C	`			189	
	,	,	,				189
	psi, std	(does not include		utlet)		6.8	189 6.8
		. –		^{utlet)} <u>Design</u> scfm	<u>Peak</u> scfm		

Aero-Mod, Inc. CLARIFIER DESIGN CALCULATIONS

Project: Newport, V Engineer: JUB Engin Clarifier Type Used:	eers	r		Date: Units:	11-Oct-23 English	
FLOW CONDITIONS						
	Design Flow, MGD Peaking Factor, hourly Duration, min Peaking Factor, sustained Aeration Tank Volume, Mgal MLSS, mg/l Avg. RAS Recycle Rate, %		0.500 4.20 2.100 MGD 60 3.00 1.500 MGD 0.500 3,469 150%			
EQUIPMENT SIZING	& SELECTION					
Number of Clarifiers Clarifier Unit Model Bridge Length, ft Clarifier Unit Width, ft Number of Units per Cl	arifier	2 20400 20 20 2	Surface Area per Clarifie Total Surface Area, sf Total Weir Length, ft Tank Wall Depth, ft Tank Water Depth, ft	er, sf	800 1,600 148 16.0 14.0	
SURFACE OVERFLO	WRATE		ADF			
Design Flow, gpd/sf Peak Day Flow, gpd/sf Peak Hour Flow, gpd/sf Max. Flow Allowed Through Clarifier Orific WEIR OVERFLOW RATE			3139381,000 * Max allowed to leave clarifier1,000 * Max allowed to leave clarifier1,000 * Max allowed to leave clarifier			
	w, gpd/lin. ft		3,378 10,811			
SOLIDS LOADING RA	TE					
Design Flow, lbs/day/sf Peak Flow, lbs/day/sf			22.6 42.5			
RETENTION TIME - in	cluding RAS					
Design Flow, hr Peak Flow, hr			3.2 1.7			
PEAK FLOW HANDLI	NG - IN-BASIN	I SURGE STOR	AGE			
Hourly Peak Flow, MG Max. Flow Through Cla Stored Peak Flow, gpn	arifier, MGD	2.100 1.600 347	Vol. of In-Basin Surge St Capacity of Surge Stora		21,195 1.0	
			Peak Hour C	Capacity, hi	r. 1.0	

PEAK FLOW HANDLING - SIDE-LINE SURGE TANK

Aero-Mod, Inc. TANKAGE DESIGN CALCULATIONS

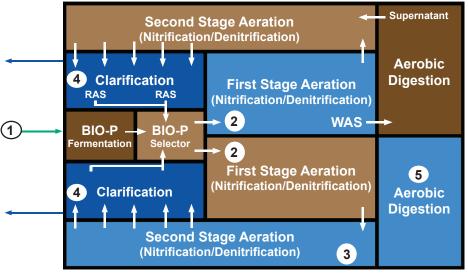
Project: Engineer: Tank Cons	Newport, WA JUB Engineers struction: Cast-in-Pla	ice Concrete			Date: Units:	11-Oct-23 English
SELECTO	R TANK					
	Anoxic Selector	Volume Requ	ired, gal	41,667		
	Number of Tanks		Tank Lengt	h, ft		40.0
	Tank Wall Height, ft	16.0	Tank Width	n, ft		10.0
	Tank Water Depth, ft	14.0	Total Volume, gallons			41,888
Freeboard, ft		2.0	Retention 1	Time (Forward F	low) min.	121
AERATION TANK		Volume Selec	cted, gal	500,000		
Tank Wall	Height, ft	16.0	Number of	Trains	2	
Tank Wate	•	14.0	Number of		2	
	Stage 1		Number of	Stage 2	2	-
	Number of Tanks Tank Length, ft	2 46.0	Tank Lengt		2 87.3	
	Tank Width, ft	40.0 25.625	Tank Lengt		14.0	
	Area of Each Tank, sf	1,179	Area of Ead		1,222	
	Total Volume, gallons	246,877	Total Volun		255,831	
	-	Total volume	provided, gal		502,708	
			1 / 0			
CLARIFIE	R TANK					
Number of	Tanks	2	Tank Width	n, ft		20.0
Tank Wall Height, ft		16.0	Tank Length, ft			40.0
Tank Wate	er Depth, ft	14.0	Total Volun	ne, gallons		167,552
AEROBIC	DIGESTER TANK	Volume Selec	cted, gal	160,000		
Number of	Tanks	2	Tank Lengt	h, ft		19.0
Tank Wall Height, ft		16.0	Tank Width, ft			40.875
Tank Wate	-	14.5	Total Volun	ne, gallons		168,465
		10				
OVERALL	TANKAGE DIMENSION	15				
Total Leng	th, ft	110.0	Wall Thickr	ness, in		15.0
Total Width		85.50	Floor Thick			18.0
Total Area,		9,405		rete for Walls, c	;y	628
Total Wall Length, LF		847	Total Conc	rete for Slab, cy	1	544
	-		Total Grout	for Clarifier, cy	,	50

SEQUOX® Biological Nutrient Removal

Activated Sludge Process Provides Nutrient Removal with High Quality Treatment and Energy Savings

Holton, KS 0.528 MGD

Aero-Mod believes nutrient removal requires energy efficiencies. The SEQUOX® Biological Nutrient Removal Process along with the Deptimizer control meets this requirement. It is the latest innovation for biological nutrient removal from Aero-Mod. **SEQUOX** (SEQUential OXidation) offers the benefits of sequencing aeration with plug flow kinetics and the reliability of continuous Consistent superior clarification.


effluent quality is achieved with total nitrogen levels as low as 3 mg/L. Phosphorus removal can be achieved by incorporating a fermentor/anaerobic selector and/ or chemical addition. The process is energy efficient and has a small footprint. Furthermore, it requires no recycle pumps or mixers.

The SEQUOX[®] process often incorporates the ClarAtor[®] clarifier technology which is

FEATURES

- Biological Nutient Removal
- Plug flow kinetics
- Continuous clarification with sequencing aeration
- Sequential reactions without turning blowers on/off
- Superior energy control
- Operator friendly and low maintenance
- Automatic back-up controls should PLC fail
- Selector tank promotes better settling characteristics
- No moving parts below the water surface

low-maintenance and operator friendly. Featuring stainless steel and fiberglass components with no moving parts below the water, its unique flow regulation system provides in-basin surge storage. The **Definiter** control system maximizes energy efficiency by balancing organic demand with mixing energy requirements.

SEQUOX[®] Biological Nutrient Removal

1–Flow enters into an Anoxic-Selector Tank or BIO-P Fermentor/Anaerobic Selector Tank, where the raw sewage is combined with returned activated sludge (RAS) from the clarifiers.

2 – This mixture then flows into the **First Stage Aeration Basins** where the air is sequenced on/off on a 2 hour cycle. During peak organic loadings the **Deptimizer** controls the alternation of air and can activate both 1st Stage Aeration Basins.

3 -Flow continues into the Second Stage Aeration Tanks. The aeration is sequenced on/off on a 2 hour cycle between these two basins. The sequencing of this on/ off air is opposite to the 1st Stage Aeration Basins. The end result of the plug flow process with sequential reactions is excellent nitrification/ denitrification without having blowers turned on and off nor have dedicated internal recycle pumps and associated mixers in separate anoxic tanks.

The combination of cyclical aeration in the four (4) basins creates excellent aerobic conditions for BOD and ammonia removal when aerating. When the air is off, the nitrate laden MLSS settles and becomes oxygen deprived, creating anoxic conditions for the nitrates to become the oxygen source and allow for denitrification to occur. The plug flow process repeats this cyclical on/off aeration several times as the liquid mass progresses through the SEQUOX[®] process and on to the clarifier.

4 – The flow then enters the **ClarAtor Clarifier** where the biomass is settled and returned to the Selector Tank. The clarified effluent is withdrawn and discharged.

5 – At regular intervals solids are automatically or manually wasted to an **Aerobic Digester/Aerated Sludge Holding Tank.** Supernatant is simultaneously decanted back to the aeration process over a fixed level weir.

The SEQUOX[®] process with our innovative **Depimzer** control strategy offers optimal energy efficiencies. It has more turn down for

under loaded plants than ever before. The control philosophy allows the plant to mimic the actual organic loading coming to it. A plant is driven either in an organically "ACTIVE" mode; or, it is in a mixing "SEMI-ACTIVE" mode; or, it is virtually under no organic load and can "REST". Energy savings is the result of operating the minimum required basins and reducing blower usage for minimum mixing energy, or, no energy as the blowers are turned off in the "REST" mode.

LOAD TUNE YOUR PLANT WITH THE

CONTROL STRATEGY

ClarAtor[®] Clarifier

Combining the SEQUOX process with the ClarAtor clarifier technology offers cost effective compact solution. Other ClarAtor advantages include:

- No moving parts below the water
- Unique ability to regulate effluent flow rate for in-basin surge storage
- Uniform influent distribution and collection
- Stainless steel and fiberglass fabrication
- Rapid and positive sludge withdrawal
- Minimal maintenance

Use the SEQUOX[®] Process and DO₂ptimizer[™] D.O. Control to "Load-Tune" Your Process

Aero-Mod's SEQUOX® process has a continuous, plug-flow pattern with sequential reactions. Sequential reactions means the aeration basins are aerated intermittently to minimize the mixing requirements to half of the tankage. Sequential reactions also means that with the alternating conditions of aerobic anoxic. nitrification and and denitrification will occur in the aeration basins. Denitrification will reclaim a portion of the oxygen used in nitrification. Use of the DO₂ptimizerTM D.O. Control System provides control of the air supplied to the aeration system in the tankage to provide the minimum air necessary for proper treatment and operation. At all times the Dissolved Oxygen (D.O.) level in the aeration basins is monitored, and the proper blower operation is correspondingly controlled. During periods of high loading (organic driven), the blower speed and quantity are adjusted to maintain the D.O. level within a set range. During periods of low loading (mixing driven), the blower speed and quantity are adjusted to maintain mixing intensity while limiting the D.O. to a maximum level. During periods of minimal or no loading (rest), the blowers are turned off to allow the process to "rest". The combination of the SEQUOX Process and the DO₂ptimizer D.O. Control System provide a cost-effective way of maintaining the most powerefficient operation of the wastewater treatment plant while achieving Total Nitrogen removal to the lowest levels attainable biologically.

AEROM	00		DO CONTROL			11:47:55 AM 5/9/2018 LOGGED IN AS: OPERATOR		
ACTIVE DO STATUS			DO READING HIGH DO			WINTER MODE NOT ACTIVE		
AVERAGE	ACTIVE	DO	1.0	SETPOINT		DEWATERING M	ODE NOT ACTIVE	
BASIN A1 DO	0.40 BASIN B1 0.23		TERVAL MAINING 0.96	LOW DO SETPOINT		WAS PUMP N	IOT RUNNING	
LOWER-1	RUNNING	LEAD	60	ACTUAL Hz	A1 D0 PROBE	B1 D0 PROBE		
SLOWER -2	RUNNING	LEAD	60	ACTUAL HZ	NORMAL	NORMAL		
LOWER-3	RUNNING	LAG-ONLINE	22	ACTUAL Hz	A2 DO PROBE	B2 DO PROBE		
LOWER-4	STANDBY	LAG-ONLINE	0	ACTUAL Hz	NORMAL	NORMAL		
BLOWER -5	IDLE / OFF	LAG-OFFLINE	0	ACTUAL Hz	48 M	IN. LEAD Hz		
F DELAY REMA OWER / AERATI IE REMAINING	INING	15 30	WER1 BLO	WER2 BLOWER3 I	BLOWER4 BLOWER5	THESE TWO TIMERS ARE FOR HIGH DO CONDITIONS		
G BLOWER	VING	15				FOR LOW DO CONDITIONS	DO SETUP	

- TN levels to lowest achieved biologically
- Mimics/matches actual demand to achieve energy efficiency
- Able to reduce energy consumption over conventional D.O. control
- Operates with energy efficiency even on plants well below design capacity

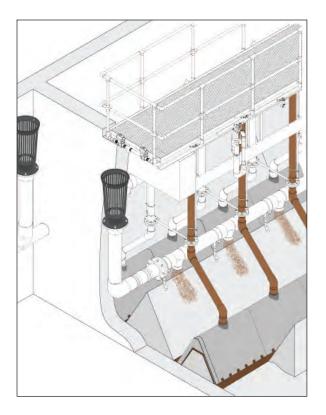
ClarAtor® Clarifier Technology

Headache Free Clarifier With No Moving Parts

The ClarAtor clarifier equipment is installed into concrete tankage, utilizing commonwall aeration basin construction, helping to lower capital and construction costs.

Aero-Mod's proven ClarAtor[®] clarifier technology puts the operator in the best position to succeed. It features no moving parts below the water, a uniform distribution of the influent, and a uniform collection of the effluent. It also offers the unique ability to regulate the effluent flow rate. It is applicable to municipal and industrial biological wastewater treatment plants.

This secondary clarifier technology

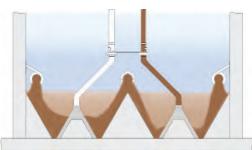

can be used for a wide range of flows (including infiltration and inflow problems) and can be applicable for retrofitting rectangular clarifiers.

The clarifier equipment is typically installed in conjunction with the SEQUOX nutrient removal process. It is installed into concrete tankage that is common wall to the activated sludge process. The equipment is fabricated of stainless steel, fiberglass and associated PVC

ClarAtor® Clarifier

- No moving parts below the water surface
- No motors, gears or electrical components
- Stainless steel and fiberglass fabrication
- No field welding or painting
- Uniform influent distribution
- Unique ability to regulate effluent flow rate provides in-basin surge storage
- Rapid and positive sludge withdrawal
- Minimal maintenance
- Applicable over a wide range of flows

piping with a bridge that includes grating and aluminum handrails. Typical operator attention required is periodic cleaning of the walkways, skimmers, and effluent discharge weirs. Because no mechanical equipment is below water, maintenance is virtually eliminated.


Distribution and removal system creates the optimal settling environment for wastewater treatment plant clarification. Futhermore, the ClarAtor's unique effluent regulation system allows more flow to enter the plant than is exiting, creating in-basin surge storage. within the basins or in a sideline surge tank. This flow control system limits the upward velocity in the clarifier, producing a better quality effluent with a more regulated flow rate to downstream tertiary treatment or disinfection systems.

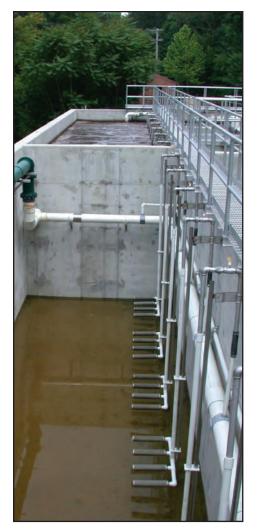
With no moving parts under the water and common-wall construction of the process tanks; a complete treatment plant fits in a rectangular configuration. This greatly reduces yard piping, electrical requirements, transfer pump stations and footprint. treatment The end result can be significant savings in capital and maintenance costs.

Settling under ideal occurs conditions because there is not a moving sludge scraper. Settled solids are rapidly removed from the bottom of the clarifier through stationary hydraulic suction hoods evenly spaced across the floor of the clarifier. Airlifts attached to the top of these suction hoods provide the pumping mechanism. The return activated sludge (RAS) rate is controlled by a timer which controls the airlifts in a "minutes

The hydraulic suction hood assemblies have ports along the bottom of the clarifier to allow solids removal via airlifts evenly spaced along the length of the suctions hoods. on/minutes off" mode. The return activated sludge is discharged back to the selector/aeration tank through the RAS trough on the bridge.

Effluent is evenly withdrawn across the clarifier through submerged launders and discharges through a flow regulation system. This unique system with the ClarAtor technology creates a clarifier able to regulate the effluent flow rate on the downstream end and absorb the excess flow

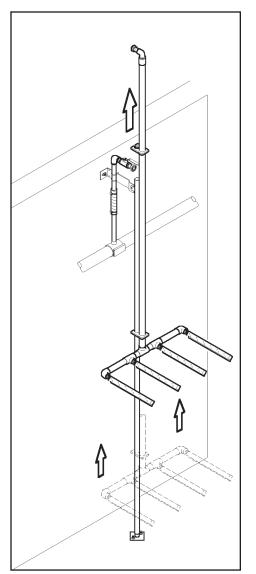
SEQUOX[®] Process


Combining the ClarAtor Clarifier with the SEQUOX process offers a compact low maintenance plant. Other SEQUOX advantages include:

- Biological nutrient removal
- Continuous clarification with sequencing aeration
- Operator friendly, low mechanical process
- Reduced energy requirements
- Superior effluent quality

SR Diffuser Access System

An Innovative Solution to the Challenge of Diffuser Inspection and Maintenance


The SR (Slide Rail) Diffuser Access System provides simple removal of the aeration diffusers within a tank without turning off the blowers or draining the tank(s). Applications for the system are typically for aeration or digester basins.

Isolation and air control are provided by a ball valve on each assembly. Removal is achieved by loosening a stainless steel union and lifting up the PVC assembly on guides. Rigidity is provided by a permanently mounted stainless steel slide rail firmly bolted to the tank wall and floor. The result is a low maintenance, operator friendly system for diffuser upkeep.

SR Diffuser Access System

- Lightweight diffuser system
- Provides access to diffusers without turning off the blowers or draining tanks
- Individual isolation and control
- Constructed from long lasting, non-corrodible materials - SS and PVC
- Excellent for retrofits of existing aeration basins
- Eliminates the need for hoist or winching systems
- Provides access to an individual drop pipe without affecting the entire system

Diffuser inspection is easily accomplished without draining the tanks, turning off the blowers, or using a hoist. Diffuser cleaning and maintenance can be performed without affecting the operation of the treatment plant or shutting off other diffuser assemblies.

Typical installations include the tubular type of coarse or fine bubble diffusers. Two to six diffuser assemblies are usually mounted to a common slide rail system.

Installation of the SR Diffuser Access System can include new construction or retrofits to existing mixing or aeration basins.

Systems can be designed for "wet **Diffusers** installation" in retrofit applications with all hardware mounted above the water.

PVC Drop Pipe

Typically, a two inch schedule 40 PVC pipe is used to transfer air to the diffusers below the surface of the water in the tank. Supports are mounted to the drop pipe that direct the assembly along the guide rail for inspection and maintenance. At the top, a stainless steel union is installed on the pipe that can be easily disconnected for removal of the assembly. Additionally, a stainless steel shut-off throttling ball valve is located at the top of the assembly to isolate the assembly from the air line.

Guide Rail Mounting System

The rigidity needed for operation of the SR Diffuser Access System is provided by the 1.5" stainless steel guide rail. The guide rail is attached to the side of the tank near the top by a stainless steel wall bracket and then secured to the bottom of the tank by a stainless steel floor mounted support.

The SR Diffuser Access System can be used with stainless steel coarse or tubular membrane diffusers. The arrangement of the diffusers per drop pipe is usually two, four or six diffusers in either 12" or 24" diffuser lengths. The number of diffusers and the total number of slide rail assemblies are contingent on the air requirements. This flexible system readily accepts most types of diffusers in varying amounts.

Aero-Mod Treatment

The SR Diffuser Access System is an innovative component of an Aero-Mod wastewater treatment solution. Every Aero-Mod system is custom designed to your exact specifications and features.

- 304 Stainless steel fabrication for long term reliability and reduced maintenance.
- Simple, operator friendly processes and equipment for operational consistency.
- Common-wall, cast-in-place concrete tank construction for easy expansion.